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ABSTRACT 
 
The usual initial conditions considered in General Relativity are shown to suffer from two 
defects. On the one Hand, their physical measurement is shown to involve three instants of time 
instead of two and, on the other hand, these initial conditions are subjected to consistency 
conditions, a regrettable situation according to Wigner.  It is shown that these two negative 
features are closely related to Mach's principle. Physical initial conditions are proposed which 
suffer from none of these defects. 
  
A precise definition of "Mach's Principle" is given. A particular approach to general relativity is 
presented involving the consideration of physical initial conditions. General Relativity is proven 
to be strictly Machian, provided gravitational radiation energy is considered as being part of the 
distribution of matter which determines the 'privileged' system of reference.  
, 
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INTRODUCTION 1: Various approaches have been considered to demonstrate the Machian 
properties of Einstein's General relativity. It was thought that the integral form of Einstein'e  
equation was the definitive solution to the question. 
 
The present paper takes a 'frontal' approach. It deals directly with the relation between the 
distribution of matter and the determination of 'the inertial frames'. It demonstrates that, in  
General Relativity, the distribution of matter does determine the inertial frames, provided a 
proper generalization of the notion of 'inertial frames' is made, and provided gravitational energy 
is included in the distribution of matter.  
 
We will deal in this paper with the following aspect of Mach's principle: The inertial frames are 
determined by the distant stars (the distribution of matter) 
 
     At the time the principle was formulated, space was considered flat and absolute, while time 
was considered absolute. Though Mach's principle challenges the concept of absolute space,  
it accepted the notion of inertial frames.  
 
     Even within these limitations, Mach's principle, as enunciated above, is not a sharp 
mathematical concept. Its translation into modern gravitation, with its covariant Riemannian  
theories, is bound to be still more vague and general. To reduce the difficulties, we will take one 
step at a time and will consider: 
 
a) Newton's laws without a Machian principle 
b) Newton's laws with an ad-hoc Mach's principle 
c) A generalized definition of inertial frames and a  corresponding general formulation of Mach's                         
principle 
d) General Relativity and Mach's principle 
 
NEWTON'S LAWS WITHOUT MACH'S PRINCIPLE 
 
     Newton equations being of second order, the future of a system of particles is determined if, 
at an initial time, we are given the masses, positions and velocities of the particles. This 
statement is not quite true. In addition, we must either state that the initial positions and 
velocities where measured in an inertial frame, or give additional informations specifying the 
motion of the observing frame relative to an inertial one. In case nothing is known about the 
relative motion of the observer's frame, we could still determine the future of the system if we 
were given, in addition, the accelerations of the particles. The system would then be over-
determined and would be subjected to consistency conditions. According to Wigner1  this is not 
a healthy sign for any theory.   
 
NEWTON'S LAWS WITH MACH'S PRINCIPLE.  
 
Mach's principle states that the inertial frames are determined by the distribution of masses (the 
distant stars). Therefore, in a Machian theory, the movement of the observer's frames relative to  
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inertial ones is a redundant information. The 'whereabouts' of the inertial frames could be found 
from the 'whereabouts' of the distribution of masses.   
 
   We therefore adopt the following precise definition of Mach's principle in a flat space, as it 
could have been formulated in Mach's times:  
 
A theory of gravitation will be called Machian if in it the evolution of the system can be 
uniquely determined from a regular set of initial data that includes no information on the 
reference system relative to which the data are referred.  In particular, it need not be known if 
the observer’s frame of reference is inertial or not.  
 
By a regular set of initial data we mean the values of the functions characterising the state of the 
system and their first time derivatives at an arbitrary initial time.  
 
Let us apply this definition on the following example of initial data: the universe is composed of 
only two equal masses separated by a distance 'd'. The observed initial velocities are -v and v and 
are perpendicular to the line joining the two masses.  
 
The Newtonian theoretician will say: if the observed velocities were measured by an inertial 
observer, the two masses would describe conics and, for particular values of the masses 
velocities and initial distance, the conics could be a common circle, and the distance between the 
two masses would then remain constant.   
 
It could however well be that the masses, at the initial time, are at rest relatively to an inertial 
frame and that the observed velocities v and -v are the result of the rotation of the observer's 
frame. In this case, the distance between the two masses would decrease till the two masses 
collide. In fact there is an infinity of possible observing frames. The possible future motions are 
therefore infinitely numerous. According to our definition, Newton's gravitation is not Machian.  
 
NEWTON'S GRAVITATION FITTED WITH AN AD-HOC MACHIAN PRINCIPLE , 
 
1We could add to Newton's theory a Machian principle asserting that the inertial frames are the 
ones in which the total linear and angular momentum are both zero. In such a case, the previous  
initial data problem would have a unique solution. The given initial data correspond to a non-
zero total angular momentum. This would indicate that the reference system is rotating relatively 
to the inertial frames.  
 
It is evident in this case that the two masses are initially at rest in an inertial frame and will 
therefore move towards each other till collision, though, in the observer's frame, they will be 
seen spiralling towards each other till collision. We no longer need additional information, such 
as initial accelerations to determine the future of the system.   
 
Let us underline the two important following conclusions:  
 
1) It is the addition of an ad-hoc Mach Principle that allows the equations of motion to be of 
second order with respect to a set of particular observers singled out by this principle. 
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2) It is the same addition that 'cleans' the theory by allowing arbitrary initial conditions (not 
subjected to consistency  equations).  
 
GENERALIZED FORMULATION OF MACH'S PRINCIPLE  
 
1There are no global inertial frames in General Relativity. It is however possible to generalize 
this concept to a Riemanian space-time. In order to avoid confusion we will call the proposed 
frames 'privileged frames'. In our definition, the privileged frames are those in which the speed 
of light is constant in space, in time and in whatever direction.   
 
Let us consider a Riemanian space  
 
. 2ds g dx dxα β

αβ= , 
the geodesics of which are the trajectories of test particles while the null geodesics give the light 
trajectories. (Greek indices will take the values 0,1,2,3 while latin indices take the 3 values 1,2,3)   
 
     The speed of light, at any point and in any direction, is  then given by2   
 

1/ 2

( ) /[ ( ) ]j j
oo jo oov n cg g n g= − + −  

   
in which  jn  is the unit 3-vector in the direction of light propagation. The privileged frames 
therefore will be characterized by   
 

0iog =    and  ctte. (which we will chose to be –1)  oog =
      It can be shown that a test particle acted upon by gravitational forces only, will remain at rest 
in such frames if it is there at rest at any initial moment. The privileged frames therefore share 
this important property which characterizes the Newtonian inertial frames.   
 
    It is clear that the knowledge of the ogα  and the    at an initial time , is equivalent to 
knowledge about privileged frames. If 

,o ogα ot
0iog =    and oog =  -1 then the observer is a privileged 

one. If not, the knowledge of , and their time derivatives, is enough to determine 
the relation of the observer's frames to that of a privileged observer. A transformation (equ. 20) 
would then allow to determine the data as seen by a privileged observer. 

 agα nd the o ijg

o ogα

 
     To specify  would therefore be to specify the referring frames with respect to 
privileged ones. In a Machian theory, these values should not be given as part of the initial  

, and the ogα

data.   
 
     Our previous definition of Mach's principle can now be generalized by replacing the term 
'inertial' by  'privileged'. The definition would then have a general validity. In particular, in the 
important case of Riemanian space-times, we adopt the following definition:   
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A theory of gravitation in Riemanian space-time will be called Machian if in it the evolution of 
the system can be uniquely determined from a regular set of initial values for   , and ij ij og g
( i, j =1,2,3) with no knowledge whatsoever of  , and o og gα α o

 
This definition has at least the merit of giving a practical criterion of 'Machianity'. We call these 
restricted initial values, physical initial values, to be distinguished from the traditionally 
accepted initial values that could then be called mathematical initial values.  
 
GENERAL RELATIVITY AND MACH'S PRINCIPLE   
 
We have seen earlier that, in the absence of knowledge about the observer's frame of reference, 
and in the absence of an additional ad-hoc principle, Newton's gravitation laws could not 
determine the future evolution of a system unless, in addition to masses, positions, velocities, 
and  
accelerations were also given (subject to conditions).   
 
     In general relativity however, the initial data of g and g ,o , if it satisfies consistency 
equations, will determine the future evolution of the system3 
 
Einstein's equations are usually divided into two sets: one set of 4 equations with no second 
time-derivatives, which are conditions to be satisfied by the initial data (which is therefore not  
arbitrary) and a set of 6 equations which determine the evolution of the system.  
 
     It seems therefore that the knowledge of the state of the system at time t and t+dt is enough to 
determine its future evolution. This is somewhat paradoxical since Newton's gravitation, which 
needs three instants in the absence of knowledge on the frame of reference, is a good 
approximation to general relativity for very weak fields 
 
     The paradox disappears if we observe that:  
 
1) As in the Newtonian case in which we have no knowledge concerning the whereabouts of the 
inertial case, in General Relativity the initial data is subjected to consistency conditions.  
 
2) In order to measure the  , the observer needs three different times. The  
can be found from distance measurements between the positions of the masses and the test 
particles at the initial moment . However, the 

, and the ogα

ot

o ogα ijg

ogα    necessitate two instants since they are 
obtained by the measurement of the speed of light. Their time derivatives necessitate therefore 
three instants of observation and are indications on the acceleration of light.   
 
3) In the Newtonian case, the ad-hoc addition of Mach's principle allows one to determine the 
future evolution from the given observations at time t and t+dt. Similarly,  if  Einstein's theory is 
Machian, the privileged frames should be deductible from the initial  without 
knowledge of the  (which would give away the frame of reference) Let us             
underline the following conclusions:  

,and ij ij og g

, and the ogα o ogα
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a) If general relativity is Machian the ogα  and their time derivatives, are not part of the initial 
data. In this case, the 4 equations that used to be consistency conditions imposed on the initial 
data become 4 equations determining the g o as function of the arbitrary initial conditions  
( }. As to the remaining six equations, their needed initial data of  can 
now be arbitrary. 

, and ij ij og g , and ij ij og g

 
b) If general relativity is Machian, the  are not part of the initial data which now 
contains only the  which need only two instant t and t+dt for their measurement   

, and the ogα o ogα

o ogα

, and ij ij og g
 
c) The exclusion of the  from the set of initial conditions, results from physical 
requirements. It is to be noted how much this fact is related to Mach's principle.  

, and the ogα

 
The parallel with the Newtonian case is evident. Let us examine the initial value problem in 
general relativity. In order for general relativity to be a Machian theory, the 4 equations for the 
g o should determine a solution for the observer's frame which, together with the solution to the 
6 other equations, would single out a unique physical solution for the evolution of the system.   
 
The 4 equations comprise one algebraic equation determining  and three partial differential 
equation on the initial hypersurface 

oog

ot t= . The 3 partial differential equations take the form4 
 
              .KTi

o = (1/V)[Pi
j - i

j P]; j                (2) 
 
while the algebraic equation is , 
                                     

2 2(1/ 2)[ ]o
oKT P H R= − −                              (3)  

  
In these equations R  is the scalar 3-space curvature.   All operations on spatial indices 
(including  covariant derivatives) are on the initial 3-space. is defined by:   ijP
 

, ;[1/ 2 ]( )ij ij o oj i oj iP V g g g= − − ;

1

              (4)  
 
and   while  and i

iP P= 2 j i
i jH P P= 2 ( )ooV g −=        (5)  

  
Indices are raised with  which is the inverse of the 3- metric . We have for instance:  ije ijg

i i
j aP e P= a

j . Similarly we also have:     a
ij ai jP g P=

From (3) and (5) can be expressed as:  oog
                                         _ 

2( ) /(2oo j i o
i j og = Λ −Λ Λ + )kT R                           (6) 
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with          , ; ; 2ij ij o oj i oi j ijg g g VΛ = − − = P 2 u
uΛ = Λ                                   (7)  

  
oog  is obtained from    through  oog

 
1/( )kl oo

oo ok olg e g g g= +                                                        (8) 
 
while   is the 3-covariant derivative of the 3-vector .   ;oj ig ojg
 
The problem of finding solutions for the , can be divided into two steps  oig
  
First step: we solve equations (2) and (6) as determining the and . In this step  is 
considered as an unknown 3-tensor which is to be expressed in function of 

only 

ijP oog ijP

, ,  and oo o o
ij o ig g T T

 
Second step: For each set of  and  so determined, we solve (4) for the    ijP oog oig

We will now prove that, for a given set of the and , all different solutions of (4) for the 
, orrespond to one and the same physical solution expressed in different coordinate systems. 

ijP oog

oig
 
Let us for instance start with a particular solution of (4) for the  and let us perform the 
following  transformations:  . 

iog

 
i i iu

uox x te g= −  and t = t                        (9) , 
At the initial time 0t t= = , we shall have the following (see appendix):  
 

, , ; ; 2

oo oo

ij ij

ij ij

io io
i i

o o

oo
ij o ij o oi j oj i ij

g g
P P

g g

g g

T T

g g g g P g

=

=

=

=

=

= − − = −

                                          (10)  

  
Therefore, given the initial data , all different solutions of (2) and (3) corresponding 
to the same solution for , represent one and the same physical solution expressed in 
different coordinate systems. Therefore, the multiplicity of different physical solutions can only 
occur from the first step that determines , 

, and ij ij og g

oog

ijP

 and ijP
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The uniqueness of the physical solution corresponding to a given , has a definite Machian 
meaning. 

ijP

 
Let us consider, for instance, an initial distribution of matter with cylindrical symmetry in an 
initial 3-space cylindrically symmetric. Let  be the Killing vector characterizing this 
symmetry and let us consider a particular solution for  and a particular set of  
corresponding to it. Let us now perform the following transformation of coordinates:   

iQ

ijP iog

  
. i i ix x tQ= +         t t=                              (11) 
 
At the time t =t =0 we will have:  
 

ij ijg g=     ;          ;   a oo
io iag g Q g g= = oo       (12) 

 
, , , ,

a a
ij o ij o ij a aj i ai ig g g Q g Q g Q= + + + ,

a  
 
 which can readily be rewritten: (see appendix)  
  

, , ;ij o ij o i j j ig g Q Q= + + ,  
  
and since  is a killing vector, we will have: iQ
 

, ,           ij o ij o ij ijg g P= = P  
 
This is indeed a purely Machian effect. The two observers related by the coordinate 
ransformation are turning one relatively to the other, though, at time t=0 their frames coincide. 
They observe the 
same initial data corresponding to two different kinematical situations, and come up with the 
same physical solution.  
  
It is clear that in the Newtonian case we would have had two different physical solutions because 
the same numerical data referred to inertial frames and to rotational frames give rise to two 
different physical situations. 
  
The fact that this Machian effect is exhibited in the case of the existence of a Killing vector in 
the 3-space does not mean that the effect does not exist otherwise. However, only in that case is 
it possible to have the same value of  for the two observers. ,ij og
  
There remains an essential difficulty which is encountered in step one: equations (2) and (6) 
have more than one solution for the  corresponding to the initial data of the , and it can be 
shown that two different solutions of (2) and (6) determine two different physical solutions.  

ijP ijg
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     Strictly speaking, and though every physical solution corresponding to a given  exhibits 
the Machian features inherent in the multiplicity of the 

ijP

og α  solutions corresponding to one same 
physical solution, the fact that the  determine an unique solution for the  would 
seem to be a non-Machian feature (according to our definition) : the regular initial data do not 
determine uniquely the future evolution of the system. 

,and ij ij og g ijP

  
Let us see if it is possible and desirable to give a physical criterion that would allow to choose 
one, and only one, out of all possible solutions. Such a subset of solutions of Einstein equations 
would then become Machian. Such a procedure is always possible with any theory. However, if 
the Machian character is added ad-hoc and does not derive from the spirit of the theory, we could 
hardly say that the theory is Machian. We could, at most, say that a Machian principle has been 
superimposed on it. 
  
Let us have a closer look at equation (2). We can rewrite it:  
  

( 1/ 2)
;

i oo o
j i jM Kg T−=  

 
It expresses the divergence of the tensor field i

jM  as being equal to the vector source o
jT   (within 

a factor) with 
 

( )ij ij ijM P g P a= − −  
 
in which 'a' is   a   constant   on   the   hypersurface   t=0   and   may therefore be a function of 
time t.  
 
In Electromagnetism, the divergence of field vectors is equal to their sources. The solution of 
such equation is given by adding to a particular solution, the general solution of the 
homogeneous  
 equation obtained by equating the source to zero. In flat space, of all the solutions to the 
divergence equation, only one is zero at infinity and tends to zero when the source tends to zero.   
All other solution are obtained by adding to this one the curl of any field vector. The uniqueness 
of the solution can be obtained either if we know that there are no wave components in it or if we  
 are given additional information as to the initial wave distribution.  
  
In general relativity, the situation is similar. Either we decide to single out that solution for the 

ijM  which depends solely on the matter tensor (no radiation, and that means to choose 0ijM =  
in vacuum) or to be aware that the initial data for the  are compatible with 
different initial distributions of gravitational radiation.  , 

,and the ij ij og g

  
We are led therefore to examine the two possible alternatives:  
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1) We, arbitrarily, single out the ijM  which tends to zero with the sources and which is zero 
itself if the source is zero. This leads to a unique physical solution when the  are 
given while the  are unknown. This unique solution will be considered later.   
The fact that the waveless solution is unique, points to the source of multiplicity of solutions. It 
is due to the multiplicity of the possible initial wave configurations. 

, and the ij ij og g

. and the io io og g

  
2) In addition to the regular initial data ( ), we also specify just enough information 
on the radiation distribution, allowing us to single out a corresponding unique solution for the 

,, , ij ij oT g gαβ

ijM .In this case, general relativity is still Machian according to our definition (no  in 
the initial data) 

, and io io og g

 
Let us consider the case with .  The radiation-less case 0ioT = 0ijM =  can according to (15) and 
(16) be written: 
 
                                                                (17) , ( ) 0ij ijP g P a− − =
 
The solution of (17) is unique and given by: 
 . 
                                           .                                    (18) ( / 2)ij ijP a g=
 
or                                              (19) , 1/ 2

, , , ( )oo
ij o io j jo i ijg g g a g g−− − = −

 
Eqs. (19) represent a set of six partial differential equations determining the three unknown  
(together with a seventh algebraic equation for the ). 

iog

oog
 
It can be shown (see appendix) that the coordinate transformation: 
 
 1/ 2 i 1/ 2)( )   ;  x ( )oo j oo ij

jot g t x tg g−= − = − − e−

o
iT

                          (20) 
 
does not affect the values of the 3-metric  while it makes all the  equal to zero and 

equal to -1. In the new coordinates, 
ijg iog

oog 0 implies 0o
iT = = .What follows is therefore valid for 

a  
radiationless universe in comoving coordinates. 
 
Equations (19) becomes:  
 

, , or  ( ) /( ) ( )ij o ij ij o ijg ag g g a= = t  
  
the solution of which is: 
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(1/ 2) ( )
( 1, 2, 3)

a t dt
ij ijg f x x x e∫=  

 
The Robertson-Walker metric is a very particular case of (21) while Godel's metric cannot be put 
into this form. 
  
From the point of view of the initial data problem, the function of time in (21) is a constant at the 
initial time t=0. This constant can be absorbed in the function f which becomes determined by 
the initial data. The radiation-less condition is then expressed in the fact that the  must be 
such that  . This condition, if satisfied at time t=0 will remain satisfied at time t with a 
function of a(t)determined by the 6 evolution equations.  , 

,ij og

,ij o ijg a= g

 
The condition ijM o=  has a clear physical meaning.  The quantity 
 
8 ( )ij ij

iJ P g P d jπ ξ= −∫ σ                                                    (22) 
 
is a conserved one if  iζ  is a Killing vector of the 3-space5  or if   

iξ  is an assymptotic Killing vector in an assymptotically flat 3-space. The assymptotic Killing 
vectors for rotational and translational symmetry will give rise to a conserved linear and angular 
momentum.  
 
The condition  makes the expression in (22) equal to zero and states therefore that, in the 
radiationless case, the total angular momentum and the total linear momentum are zero (in a 
comoving privileged system).  , 

0ijM =

 
We have seen that if the initial data are compatible with the radiationless conditions, then the 
solution given by general relativity is unique. It is clear that in the case of gravitational radiation, 
the knowledge of its initial distribution would restrict the multiplicity of possible solutions of 
equations (2) 
 
We know6  that gravitational waves can give rise in the metric to terms of a Schwatschild 
character (1-2m/r) at great distances from the waves. Bodies could therefore have a planetary 
motion round temporarily localized radiation. It is therefore reasonable to expect that the 
gravitational radiation would partake in the determination of the whereabouts of the privileged 
frames. 
 
Let us consider the case of an observer who, at the initial time, in empty space, observes a 3-flat 
space with a 3-metric having null time derivatives. In the absence of the knowledge of the  's 
and the future of the system is indeterminate, though we know that one of the possible 
solutions is the Minkowski space. Let us now impose the condition that there is no gravitational 
energy, i.e. let us specify the simplest gravitational energy distribution: Zero energy.  

oig

oog
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Witten7  has proven that, in the case in which there exist a space-like hypersurface that is 
assymptotically  euclidian, the space has to be Minkowskian if the total energy is zero. This 
means that the physical solution is unique in that case.  
 
Specifying the wave distribution (null) is therefore enough to determine the physical solution. 
 
The case of spherical symmetry is a good illustration. In this case, Birkhoff's theorem ensures 
that, in free space, the solution is unique. This could be considered as resulting from the absence 
of gravitational radiation in this case.  
 
And finally, equations (15) being three partial differential equations of first order, have a 
multiplicity of solution determined by three arbitrary functions. That is precisely the amount of 
degrees of freedom' involved in the initial distribution of gravitational radiation. It can be 
shown8 that, in the immediate neighbourhood of a point, a locally Lorentz metric can be 

troduced with 1in x pointing in the direction of wave propagation, in which case all the local
vanishing components of the Rieman tensor can be expressed in function of the arbitrary values 
of the 1st and 2nd time derivatives of the three f 33 23and g . At the initial time 
these three functions and their first time-derivatives are part of the initial data. To determine the 
distribution of gravitational radiation the three second derivatives at initial time must also

 non-

unctions 

 be 
ven.  

dent on 

re determined by the initial values of the matter 
nsor . From the same

. 
/ 2

  

a al a eman tensor depends 
 subject to the fact that the sum  is also 

nown.  

n 

er dinate 

22, g g

gi
  
 Referring to Weber's equations (7.27) to (7.30) it is easy to find out that only three components 
of the Rieman tensor are not known at the initial time. The others are either null or depen
the initial conditions for the ,and the ab ab og g  or, still can be expressed in function of the 
contracted Rieman tensor whose initial values a

 abT  equations we have:  te

22,00 33,00 00 22 33 11( )R R R R+ = + + −  g g
 
The initial value of the right hand side is determined by the initial value of the matter tensor 
Therefore, the initial values of 33,022,0  and g g  are not independent. As a result, given the initial 
values of , ,  andab ab og g lues of the components of the Ri
on the ini

abT

b l the initial v

33,00 23,0 and g
 T  

tial values of 22,00 0 , g g  22,00 33,00g g+
k
 
There seems to be two degrees of freedom to determine the Rieman tensor; however, we ca
choose at each point the direction of wave propagation which gives us, apparently, 2 more 
degrees of freedom or a total of 4 degrees of freedom. Howev , one of the degres is a coor
effect since we can still turn the coordinate system round the ix  axis without affecting the 
physical distribution of the wave pattern. There therefore remains three degrees of freedom that 
llows, once the initial conditions are determined, to specify a wave distribution.  

 
a
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This tends to prove that, in addition to the Machian requested data, three more arbitrary 
functions are involved corresponding to the amount of arbitrariness existing in the distribution of 
the initial gravitational radiation.  
 
We therefore conclude that:  
 
1) In the case of universes specified as not having gravitational waves, General Relativity is 
strictly Machian according to our definition of Machianity.   
 
2) In the more general case, when gravitational waves are considered, General Relativity is still a 
strictly Machian theory, provided that gravitational radiation is accepted as a factor in 
determining the whereabouts of the privileged frames, i.e. provided we agree that initial 
conditions must contain the proper information allowing to choose a particular initial wave 
configuration which determine the uniquely. ijP
 
In cases where the mass distribution do not seem to determine the privileged frame (Goedel's 
solution for instance) one should look at the determination of the privileged frame by the 
combined effect of masses and gravitational radiation.  
 
The radiationless vacuum case represented by flat space-time seems to contradict Mach's 
principle. There are in this case inertial effects that derive neither from a mass distribution nor 
from gravitational waves distribution. This case will be dealt with in a separate paper. 
 
REMARK  When speaking of the initial data as viewed by an observer who does not know how 
related he is to a privileged system of reference, the relevant data available to the observer are 
the  
contravariant component of the metric and their time derivatives i.e.  since, as is well 

known the 3-metric  
,and ij ij
og g

ijγ  observed at an initial time  is related to  by jk
ij ig g k

ij γ δ= . A more 

cnsistent approach would have considered the  as the appropriate initial data.  , ,and ij ij
og g
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A P P E N D I X 
.Derivation of some formula 

 
Let us consider the transformation  
 

i i ix x tP= +                       t Qt=                             (1) 
 
in which P and Q are independent of t.  
 
We are interested in calculating the quantities ,, ij ij og g  , and  oog  at the initial time 0.o ot t= =  
The highest time derivative   we will be using being one, we need not consider terms with 
powers of t higher than the first (at t=0)  , 
 

We have ,,

i a
i i i i
j j ajj j

x xtP tP
x x

δ δ∂ ∂
= + = +

∂ ∂
 

 

If we replace ,  by  ( )
a

a
j

a
jj

x tP
x

δ∂
+

∂
 and neglecting terms in  we will have: 2t

  

,

i
i i
j jj

x tP
x

δ∂
= +

∂
 

 

Similarly      
i i

i i
ix P PP t P t

t t x
x
t

α

α

∂ ∂ ∂
= + = +

∂ ∂ ∂
∂
∂

 

 
 Neglecting terms in  we will have , 2t
  

,

i
i i

j
x P tP P
t

∂
= +

∂
j  , 

Likewise, we will have ,ii

t Q t
x
∂

=
∂

 and   ,
i

i
t Q tQ P
t
∂

= +
∂

 . 

. 
Grouping together the results for the transformation, we write 
 

,

i
i i
j jj

x tP
x

δ∂
= +

∂
             , jj

t Q t
x
∂

=
∂

 

 

,

i
i i

j
x P tP P
t

∂
= +

∂
j                   ,

i
i

t Q tQ P
t
∂

= +
∂

                                  (23) 

  
We can write  
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( )
u v u u

ij uv ou ooi j i j j i i j

x x t x t x tg g g g t
x x x x x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂x

 

 
Using equations (23) we have (neglecting ) 2t
 

, , ,( )u v
ij ij uj i iv j oj i oi jg g t g P g P g Q g Q= + + + + ,                                     (24) 

 

For  we may neglect all powers of t. Taking into account that ,ij og , ,ij io ij
xg g
t

α

α
∂

=
∂

 we obtain 

 
, . , , , ,

u u u
ij o ij o ij u uj i ui j oj i oi jg g Q g P g P g P g Q g Q= + + + + + ,

;

.a i

                    (25) 
 
Let us now show that, 
  

, , , ;
u u u

ij u uj i ui j i j j ig P g P g P P P+ + = +                                                   (26) 
 
Replacing in (26)  , , by  , and  by U ua u ua ua

a i i ap e P P e P e P+    and taking into consideration that 
 

, ,
ua uk ul
i kl ie g e= − e

l

l

,
u

,

; ;

 we have therefore   , , ,( )u ua uk al
i a i a kl iP e P P g e e= −

 
Therefore  , , ,( )u a

uj i j i a jl ig P P P g e= −
 
and similarly   , , ,( )u a

ui j i j a il jg P P P g e= −
 
The expression  can then be written:  , ,

u u
ij u uj i ui jg P g P g P+ +

 
, , , ,[ ]au al

ij u a j i i j a jl i il jg e P P P P e g g+ + − +  
or 
     , , , , , , , ,(1/ 2) ( ) (1/ 2) ( )al al

j i a jl i il j ij l j i a jl i il j ij l i j j iP P e g g g P P e g g g P P− + − + − + − = +   
 
and therefore 
 

, , ; ; ,ij o ij o i j j i oj i oj jg g Q P P g Q g Q= + + + + ,                                                         (27) 
 
A similar treatment for g   and g   gives 
 

2
002u v u

oo uv oug g P P g QP g Q= + +  
 

v
io iv oig g P g= + Q  
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With these results it is a trivial matter to check the correctness of (10) (with Q = 1 and  
 

i ui
uoP e g= − ), of (12) to (14), and the statement related to (20) with 

 
1/ 2 1/ 2( )          ;         ( )i i

oo jo ooQ g P g g e− −= − = − − j  
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